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ABSTRACT 

The massive development of shale oil formations has changed the 

rules of the game. On the other hand, Machine Learning (ML) and Deep 

Learning (DL) play an important role in the rapid development of all 

industries by automating most of the routine processes. The oil industry 

also gets equal benefits from ML and DL for reservoir development 

planning and operational accuracy through a series of automated systems. 

To develop the field, computational static and dynamic simulation models 

are generated based on various petrophysical properties collected through 

various resources that are time-consuming and expensive. This study 

aims to present a comprehensive model in the field of application of ML 

and DL to model the petrophysical properties using different methods and 

algorithms. Finally, the multiple ML and DL techniques that are tested in 

this study are discussed in detail in order to achieve more accuracy in the 

petrophysical simulation models. Machine learning models were used to 

support vector regression (SVR) and nearest neighbor regression (KNR), 

for further improvement, using deep learning algorithms. Use long-term 

memory (LSTM) and prepare the output by an artificial neural network 

(ANN). Also, to improve deep learning by recurrent neural networks 

(RNN) a hybrid method (LSTM) with a recurrent gates unit (GRU) and 

an artificial neural network (ANN) is used. The best decisions obtained in 

forecasting oil reservoirs and reducing uncertainty in exploration and 

drilling is if the data set is divided as follows, the prediction model using 

machine learning is 90% training and 10% testing. The best results were 

MAE = 0.238 and RMSE = 0.255 with SVR, while the KNR algorithms 

achieved results of MAE = 0.276 and RMSE = 0.301. While in deep 

learning algorithms when splitting the data into 80% training and 20% 

testing. The best performing result in LSTM had values of MAE = 0.023 

and RMSE = 0.029, meaning the best performance for deep learning.
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Chapter One 

Introduction   

1.1 Overview 

Oil is one of the most important natural resources on which 

developed countries depend on developing their economies. Its 

exploration and production stages are among the most important priorities 

of many countries. Oil prospecting and exploration are among the 

priorities of the mission that require the use of advanced techniques and 

methods. These methods and techniques differ from place to place 

according to the nature of the land and the geophysical formations of the 

fluid reservoirs. Exploration of oil wells involves obtaining information 

called the well log, which is a set of basic information on wells [1]. 

The different nature of the Earth's geophysical data is a problem 

facing drilling and exploration, which is unreliability and the increased 

risk of drilling. Therefore, Which is why seismic survey technology was 

discovered, which produced data called seismic data, It is a set of features 

by which the porosity and permeability of the well and some of the 

features of the reservoir formations can be known. With the help of 

machine learning models, which contributed to reducing drilling risks, 

increasing reliability, and predicting the porosity and permeability of the 

well [2]. 

Porosity is an important factor to determine the capacity of 

reservoirs of liquids and to give an understanding of the liquid and 

gaseous formations in them. Therefore, the basic standard requirements in 

tanks are porosity and permeability [3].  
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Data acquisition and analysis is very time-consuming and expensive, 

requires significant human and technical efforts, and the reservoir may 

not be adequately described. As a result, a less expensive and faster 

method for porosity quantification is required. Porosity can be estimated 

using the well log and seismic data, but many of these logs are difficult to 

obtain accurately [4]. 

An oil and gas reservoir is a rock formation in which petroleum and 

natural gas have accumulated. The oil and gas inside the reservoir are 

held by adjacent and accumulating layers of rock. Using available field 

and laboratory data, ML can describe different reservoir properties. The 

process of developing a reservoir, usually between the discovery and 

management phases of a reservoir, incorporates certain characteristics 

related to its ability to store and produce petroleum [5]. 

In recent years, deep learning techniques have been developed to 

process different types of data. One type of deep learning is a recurrent 

neural network (RNN), which is used for sequential or time-series data, 

such as text, audio, and video [6]. One associated technique is Long- 

Short-Term Memory (LSTM) which has processed time-series for a 

variety of data, and almost all of the excellent results have been achieved 

through deep learning [7].  

This thesis presents a porosity prediction model using machine 

learning algorithms based on (SVR) Support Vector Regression and K 

Neighbors Regression (KNR), LSTM-based deep learning algorithms, 

and Gated Recurring Units (GRU). In addition, a hybrid algorithm was 

proposed using LSTM and GRU, and (ANN) was used with deep learning 

algorithms to adjust the output weights. 
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1.2 Related Works 

The following are some recent studies on the relationship between 

machine learning and porosity prediction: 

 S.R. Na’imi. et al. (2014) [8]. In this study, an SVR approach is 

represented by ML as a functional regression method in regression 

problems. Use the principle of structural risk reduction. Where 

appropriate seismic characteristics are extracted, which mainly depend on 

the porosity of the tank and the water saturation. Then, a quantitative 

formula for the relationship between porosity parameters. It is obtained 

by using a nonlinear vector regression algorithm in water saturation and 

selected seismic features. In the proposed SVR model, the results showed 

that it is suitable for implementation to predict porosity in small data and 

solve complex problems, compared to other methods that require more 

challenges. 

 Amin Gholami. et al (2017) [9]. In this study. A mixed model is 

proposed to determine the articulation between porosity and seismic 

features by machine learning in three steps. In addition, the appropriate 

seismic features that have a prominent effect on porosity are extracted 

using the reorientation variable method and used as model input 

parameters. In addition, when compared to the non-parametric method 

known as alternative conditional expectation (ACE), the input variables 

are shifted to larger data space. In the next step, the correlation between 

the input parameters and porosity is quantitatively transformed through 

the optimized intelligence model, including optimized neural network 

(ONN), optimized support vector regression (OSVR), and optimized 

fuzzy logic (OFL) to achieve the predictive validity. In the final step, 

through the Committee Machine (CM), the integrated outputs of the 

optimized models to improve prediction accuracy are embedded in the 
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modeling intelligence. The Committee Machine (CM) model error 

distribution is very close to the normal distribution. The CM predictions 

are very compatible with reality because the errors (0.0068) from 

samplings show the range degree as to be in ± (0.0067) and (0.0301). 

 S. P. Maurya, et al (2018)[10]. The study goal is to discover an 

effective mix of seismic reflection techniques and geostatistical 

approaches for predicting porosity and identifying potential areas in 3D 

seismic data spaces. In this study, three geostatistical methods were used 

to predict porosity: single-attribute analysis (SAA), multi-attribute 

analysis (MAA), and the probabilistic neural network (PNN) algorithm. 

In a time interval of 1060-1075 ms, the result obtains a very high porosity 

(N 15%). These techniques make use of the seismic features generated by 

model-based reflection and color reflection techniques. The results 

demonstrated that all three statistical methods used to predict porosity are 

effective and reliable, but multi-feature and probabilistic neural network 

analysis provides more accurate and high-resolution porosity sections. 

 Xu Zhou, et al (2019) [11]. This paper shows how to use big data 

analysis to verify the statistical correlations between seismic attributes 

parameters from three-dimensional seismic surveys and petro-physical 

properties from (well logs). Using Deep Learning Neural Network 

(DLNN) approach. The system used in this study consists of four 

different states with different types of seismic properties designed. To 

analyze the effect of each seismic property on approach execution. In 

addition, predict the porosity estimation of each case special features 

apply cases with the features applied. The cases approach has higher 

accuracy in predicting the porosity estimation, and the prediction 

accuracy may change due to the added features to increase seismic 

quality. 
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 Anifowose, et al (2019) [3]. This study used four types of (ML), 

which are Artificial Neural Network (ANN), Functional Network (FN), 

(SVM), and Decision Tree (DT). Demonstrate the effectiveness of these 

techniques in handling large amounts of seismic data. , which aims to 

estimate the porosity and predict the permeability of the reservoir. 

Therefore, from the point of view of the study, comparing the results 

with implementation criteria such as correlation coefficient (CC), root 

mean absolute error (RMAE) and mean absolute error (MAE) gives 

better results, it was discovered that SVM, when applied to seismic data, 

has high accuracy and depth matching. This leads to a significant 

difference in the results compared to other technologies, it positively 

affects the efficiency and quality of exploration and production. The 

study also showed that ANN has more smoothing power than FN with 

SVM performance. No heterogeneity was found with FN and DT. 

Porosity estimation and prediction of reservoir permeability were not 

very effective because five or more traits were used. 

 Qitao Zhang, et al (2019) [12]. This study presents a method for 

predicting the spatial distribution of reservoir saturation using machine 

learning. This study used  (LSTM) to predict the water saturation 

distribution. In addition, using data from actual and simulated monitoring 

of reservoirs. To get a better prediction of water saturation in rocks, the 

study compared RNN and (GRU), which are popular machine learning 

algorithms, with LSTM. The results showed that the LSTM method 

improved other machine learning methods and the fluid crowding 

prediction pattern. This study presented an alternative method to predict 

the water saturation distribution in reservoirs quickly and reliably. The 

LSTM can deal with questions location prediction problems. 
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 Wei Liu, et al (2020) [13]. This study uses a numerical simulation 

method to predict oil production. Three prediction values have been 

proposed using the empirical ensemble decomposition method EEMD in 

LSTM, ANN, and SVM. The oil production chain in Chinese oil fields 

was selected as an experimental study. In base petroleum production, the 

data set must first be divided into training and testing. Then, the test set 

data is gradually added to the training set and analyzed by (EEMD) to 

obtain multiple intrinsic mode functions (IMFs). Then an appropriate 

number of constants (IMFs) are chosen as predictive variables for 

machine learning. In two real oil fields, the proposed evaluation and 

verification model was applied to the three values. The experimental 

results show that the proposed method can provide near-perfect 

predictions using LSTM over other algorithms. 

 A. Ogbamikhumi et al (2021)[14]. In this study conducted to 

predict reservoir properties, seismic reflection was combined with an 

artificial neural network (ANN), to predict fluid saturation and improve 

porosity. Using neural network techniques (NN) and multilayer feed 

neural networks (MLFN) and probabilistic neural networks (PNNs) 

computed from target characteristics where reservoir properties 

performance for porosity prediction predicted from seismic reflection. 

The expected attributes of the seismic data are related to the 

characteristics of the reservoir to test the accuracy of the process. The 

results gave good correlations for MLFN and PNN per well with a mean 

(CC) of 0.69 and 0.96, respectively, which indicates the evolution of 

PNN over MLFN. 
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1.3 Related Work Analyzing   

Through the analysis of related works that there are similarities and 

differences between the previous studies and the current study as follows: 

1. The studies are similar to the current study in terms of the 

following sides:  

 Dealing with porosity and permeability and subjecting them to 

experiments using a machine learning approach. 

 The type of data usage is the same in the current study, which 

are seismic data as well as similar in that they are a reliable 

source in predicting reservoir porosity. 

 The previous studies dealt with many of the experiences that the 

researcher benefited from in our current study. 

2. The studies differ from the current study in terms of the following 

sides: 

 Selection of experimental characteristics. Where the studies 

used the design of experimental characteristics according to the 

well log, while the researcher in the current study used the 

characteristics of seismic data according to the sequence of the 

time signal. 

 Dealing with the geological diversity of the Earth and 

subjecting it to experiments through the proposed model, which 

was achieved by the proposed system in the current thesis. 
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1.4 Problem Statement 

The main problem facing oil exploration is how to add big data for 

prediction, exploration, and production. These studies used ML and DL 

techniques to determine drilling accuracy and reliability, reduce 

uncertainty and reduce costs, and this is called the use of smart systems 

and machine learning algorithms in research development, drilling, and 

production. This thesis will discuss two issues. 

 Data is the number one problem: Iraq still has flaws in complex 

calculations. Description of seismic survey data. 

 Porosity is the second issue: the porosity of the oil tank is very 

important. Porosity estimation should be very good in tanks and oil tanks 

should have high reliability before drilling. 

1.5 Aim of Thesis  

The main objective of this thesis is to design and implement an 

efficient and effective approach to reservoir porosity prediction based on 

temporal sequential data processing, ML, and DL techniques to achieve a 

high degree of accuracy, as well as to compare these techniques to 

determine the best among them. 

1.6 Contribution  

 The main contribution of this thesis is the application of the oil 

reservoir porosity prediction system. However, the new contribution to 

this thesis uses an intelligent system based on seismic data. Another 

contribution to this thesis is the use of seismic data from a well under 

exploration and drilling. 
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1.7 Outline of the Thesis 

In this work, the Thesis " Prediction Of Reservoirs Porosity 

Based On Resulting Seismic Data Attributes Using Deep 

Learning Approach " is structured in five chapters; here is a brief 

description of their contents is given: 

Chapter 2: This chapter provides theoretical backgrounds and an 

overview of reservoir engineering and seismic data. ML and DL 

are explained with their respective sections. In addition, how the 

proposed systems can be used through the ML and DL 

approaches, with an explanation of all the algorithms used in the 

proposed approach with all the examples and detailed equations. 

Chapter 3: This chapter details the proposed approach introduces the 

proposed main system and design objectives and covers seismic 

data features that predict porosity. 

Chapter 4: This chapter gives presents the results and tests of the 

proposed system. and experimental results obtained from the 

implementation of the proposed system. 

Chapter 5: This chapter includes conclusions and future work for the 

development of use seismic data attributes to predict porosity 

approaches with lists several suggestions for future studies.
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Chapter Two  

Theoretical Background 

2.1 Introduction 

Oil is one of the most important areas of life in most countries of 

the world, and the economies of many countries are completely 

dependent on oil. Therefore, oil exploration and drilling should be of a 

high level of importance. In addition, attention should be paid to the 

development of new methods and technologies for its extraction and 

production [15]. 

This chapter describes the theoretical aspects of seismic data 

analysis and data preprocessing, data science, correlations, and 

techniques used to predict porosity. Through machine learning, as 

supports vector regression (SVR) algorithms, and k-nearest neighbor 

regression (KNR), as well as using Deep learning Recurrent Neural 

Network (RNN) and its algorithms, such as LSTM, GRU, and accuracy 

criteria. 

2.2 Basic Operations of Seismic Exploration 

Seismic exploration is the use of seismic energy to examine the 

Earth's interior. To aid in the search for fluids such as petroleum, or other 

minerals, the exploration seismic method is interested at or depth the 

Earth's surface to estimate subsurface flexible properties and notice 

differences in properties data. Rock accumulation differences refer to 

elastic properties under the surface of the earth usually refer to changes in 

the porosity of fluids. A seismic survey is a method of obtaining a 

graphical description of the underground structure by analyzing the 

reflected seismic waves [16]. 
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2.2.1 Seismic Data Acquisition 

The purpose of exploring oil and other fluids is carried out through a 

wide range of sensors scattered in thousands of geology. The Central 

Console and Operations that are sent data on the ground are to locate oil 

and gas springs [17].  

These reversible waves will be the same frequency, such as waves 

sent by the wave source, which is usually within 10-100 Hz, long-enough 

wavelengths allow deep in sub-layers [18]. 

2.2.2 Seismic Data Processing 

Seismic data processing is a string of mathematical operations that 

bring out noise attendant seismic data as well as make geometrical 

improvements such that the final seismic image of the subsurface will 

show a map to underground [19]. 

2.3 Data Science 

Data science consists of topics covering general terms such as  

(AI),(ML) and (DL), and time series modeling. In this section, some of 

the primary research use cases that data scientists have benefited from our 

data science and analysis [20]. As shows in Figure (2.1). 

Data science analysis principles and techniques are widespread and 

numerous, and perhaps one of them that increases the accuracy of the 

possibilities is the integration of past data with current data to reveal links 

in the data. In addition, the interpretation of results about some prior 

knowledge (theoretical) of properties and phenomena based on these data 

was analyzed using smart technologies [21].  
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Figure (2.1): Relation Between (AI, ML, DL) and Data Science  

2.4 Principal Processing in a Dataset 

Data processing technology is necessary. Preprocessing is the 

concept of changing raw (raw) data into a clean dataset. The dataset 

needs to check for loss values, distortions, and other inconsistencies 

before they are implemented in the algorithm. To be suitable for use in a 

model [21].  

Also, data preprocessing is an iterative method for converting raw 

data into understandable and inferable patterns. Datasets (raw) are more 

common and are characterized by incompleteness, inconsistency, lack of 

behavior and trends, as well as errors. So to deal with missing values and 

handle inconsistencies, preprocessing is required [22]. 

2.5 Correlation Matrix 

The correlation coefficient (CC) is a  mensuration that represents the 

extent of the statistical relationship between two variables of an interval 

Artificial 
Intelligence 

Machine 
Learning 

Deep 
Learning 

Data science  
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or ratio level. The correlation coefficient is measured so that it is always 

between( 0 and 1) [28].  

When the value of (CC) is close to zero, it means that there is little 

correlation between the properties, and whenever the value of the 

distance is greater than 0, it means that the correlation is large and 

therefore we can cancel out some of the features. The case can be applied, 

for values in both directions, the positive or negative direction, with 

increasing and decreasing the relationship between properties. The two 

variables are often given the symbols X and Y, or the name of the 

attribute in the form of matrix 2D [29].  

Pearson's correlation, the most commonly used correlation for scalar 

variables, shows how properties are related. Assigns a value between 0 

and 1, where 0 has no correlation, and 1 is positive. The correlation value 

indicates 0.9 as used in the model and matrix (CC) [30].  

• A value of 1 indicates a positive linear correlation. 

• A value of 0 indicates that there is no linear correlation. 

CC=  
∑     ̅      ̅ 

√∑     ̅        ̅  
 (2.1) 

CC = r 

Xi = x-Variable in a Sample  

X    Mean of the x-variable  

Yi = The Y-Variable in a Sample 

Y     Mean of the Y-Variable 
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2.6 Time Series (TS)  

Time series of data are in the form of a set of repeated variables 

with the same or several different values, either by a fixed amount or 

variable depending on the data type. Time series can be written in the 

form [31]: 

{X1, X2...Xn} , n= number of sample 

 {xt-1, xt, xt+1}, t = time 

Time series analysis is interesting for a variety of reasons. The most 

significant of these are [32]. 

 Modeling: We could create an easy mathematical sample that 

illustrates the experimental design of Y1, Y2,......., YT. This model 

may be dependent on unknown variables, which must be estimated. 

 Forecasting: With the inputs Y1, Y2, ... and YT, we might hope for 

the parameter YT + L (L1), as well as providing a new representation 

of A for the prediction delay. 

 Control: It is the required intervention in operations generated by 

Yt values so that future values are changed to produce a new result 

[32]. 

In time series, only one variable record is referred to as a univariate. 

However, if records are taken from more than one variable, they are 

referred to as multivariates. Time series can be continuous or discrete. 

Observations are measured in a series-connected time in each time 

condition, while the observations are measured in a separate time series at 

separate time points [33]. 



Chapter Two                                                      Theoretical Background 

 
15 

2.7 Time Series Analysis (TSA) 

Time series analysis is a specific method of analyzing a series of 

data points collected over some time. In time series analysis, analysts 

record data points at consistent intervals over a specified period rather 

than simply recording data points sporadically or randomly. Because time 

series analysis involves many categories or differences in data, analysts 

sometimes have to make complex models, and models that are too 

complex or try to do too many things may fail to distinguish random error 

from true relationships, making the analysis skewed and predictions 

unrealistic [32]. 

The time series are usually very long, it enables them to analyze the 

data and make predictions from subsequent values that fall within the 

series that can be expected from each other. Figure (2.3) Standard Model 

for Time Series Prediction Task [34]. 

 

 

 

 

 

Figure (2.2): The Standard Model of a Time Series 

(a) The input time series may show periodicity and thus a predictable 

structure. 

(b) The purpose is to forecast the highest numeral of data points that 

should go into the forecast window.  

(c) The task grows difficult when it arrives at recursive prediction i.e. 

long-range forecasting of a time series means reusing the previous 

forecast values as inputs to keep forecasting [35]. 
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2.8 Artificial Intelligence (AI) 

Artificial intelligence (AI) is one of the most sought-after 

technologies of our modern age. Interest in the use of artificial 

intelligence continues to develop and industrial growth in particular. The 

emergence of smart technologies increasing the demand for innovations 

that support artificial intelligence. Data analytics enables the use of AI for 

short-term decision-making and inference [36]. 

Artificial intelligence (AI) techniques have developed greatly and the 

complexities of the problems Machine learning (ML) technology has 

emerged, and with the passage of time and need, deep learning (DL) 

techniques have emerged, where all technologies have contributed to 

solving many complex problems. Especially in the oil field through data 

from oil wells, the oil and gas industry now relies heavily on various 

analytical modeling techniques to get the best results [37].  

2.9 Machine learning (ML) 

Machine learning is a subset of artificial intelligence. To 

understand the geophysical information of the Earth, various types of data 

are collected from the surface and subsurface in the oil and gas industries. 

Sensors must be prepared to collect large amounts of data. This data must 

be drawn and analyzed using technical analysis and machine learning 

intervention [38]. 

In ML, there are many ways that computing devices can solve 

problems by learning from experience. The objective is to create 

mathematical models that can be trained to produce useful outputs when 

entering the data on which the model is trained. Machine learning models 

are provided training data and some of them are tested and tuned to 

produce accurate predictions of the training data by optimization, 
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prediction, and regression algorithm. The main goal of models is to be 

able to generalize gained experiences and make valid predictions for new 

data [39]. 

Four types of machine learning algorithms are commonly used, 

supervised, unsupervised, semi-supervised, and reinforcement. In 

supervised learning, what has previously been learned is used to analyze 

new data, whereas unsupervised algorithms can infer from new datasets 

as shown in Figure (2.3) [40]. 

 

Figure (2.3): Techniques of Machine learning[41]. 

 

The proposed method adoption of the very first type of machine 

learning (supervised learning). As well as some of its algorithms, that 

were used in detail.  

2.9.1 Supervised Learning (SL) 

(SL) is a machine-learning model to get the information about a 

system's input-output relationship established on a given set of paired 

training samples between the inputs and the outputs. Since the output is 



Chapter Two                                                      Theoretical Background 

 
18 

classified as input or supervised data, Input-output training data is also 

known as labeled training data or supervised data [42]. 

2.9.2 Unsupervised Learning (UL) 

Unsupervised learning (UL) models are a type of machine learning 

(ML) model that deals with dimensionality reduction, data factors, 

decoherence, and learning representations between data. UL models are 

gaining popularity because of their ability to learn without any predefined 

naming and to reduce noise and redundancy between data samples. 

However, due to the limited data available to learn, diversity, and 

complex dimensions, the generalization of UL models for different 

applications such as image creation, compression, coding, and 

recognition faces unique challenges [43]. 

2.9.3 Semi-Supervised Learning (SSL) 

Several semi-supervised learning (SSL) algorithms have been 

developed for learning from both labeled and unlabeled data. Therefore, 

researchers provide a natural way to represent data in its graphs, these 

graphs provide a natural way to represent data in a variety of areas. Chart 

SSL algorithms that combine these two types. These shown to outperform 

current technology in a variety of applications such as speech processing, 

computer vision, natural language processing, and other areas of artificial 

intelligence [44]. 

2.9.4 Reinforcement Learning (RL) 

Reinforcement learning is a branch of machine learning. the 

mechanism is based on rewarding or punishing skills and behaviors 

through an agent, in which the agent can react to actions by experiencing 

all actions in the procedural environment. It can correct skills and punish 
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skills. It also can carry out actions through feedback and return the state 

and then move to the next state to gain the required skills [45]. 

2.10 Support Vector Regression (SVR) 

SVR is a supervised learning algorithm used to predict discrete 

values. SVR uses the same principle as SVM. The basic idea behind SVR 

is to find the best suitable font. In SVR, the best-fit streak is the super 

level with the maximum number of points [46]. As in Algorithm (2.1). 

Algorithm (2.1): SVR Algorithm  

Begin 

Phase training dataset: 

Step 1: Reading the dataset.  

Step 2: Set an initial value of weight  

Step 3: Set an initial value of Bias 

 Step 4:Parameter C, Kernel Type, and Kernel Parameters and 

calculate the kernel according to Equation (2.4) 

Step 5:  Set ɛ   to 0.01 and vary C 

Step 6: Train the dataset  

    Step 7: Obtain the best value of C 

    Step 8: Use the best value of C and ɛ on the training dataset  

Step 9:Update the values of  weight and Bias 

 Testing Phase : 

Step 10:Select the testing dataset  

Step 11: Implement the test by using the best value of the weight, 

bais C and ɛ from the training   

Step 12: Implement the prediction  

Step 13: Calculate RMSE, MAE using Equations (2.20) and (2.21) 

End Algorithm 
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SVR is a supervised learning algorithm. SVR is the same as SVM 

but SVR is slightly different from SVM in that the base image in SVR is 

best suited for regression sequence detection. For example, in additional 

regression examples that test to reduce the error between the true value 

and the expected value. SVR tries to provide the best streak for two 

values, and the best streak is the best [47]. 

 The optimum value that the technologies seek to achieve, is the 

distance between two or more types of sample points, which is the 

reduction of the total difference between the sample points and the 

hyperplane. SVR uses the "kernel" to solve the problem of non-linear 

regression to obtain a higher regression, as well as to find the optimal 

level of separation of the sample points [48].  

SVR is the most favorable approach to solving regression issues. So 

used to predict time-series, geology, and other fields this technique 

includes exhibited effective effects in multiple different applications and 

areas of research [49][50]. 

The traditional insensitive ε loss function can be formulated in   

SVR is as follows: 

         
 

 
 ‖ ‖   ∑       

   
                                                               

The constraint values are subject to processing for the largest 

variance values from the expected ones (yi) and the similarity is poor as it 

is accepted in the following optimization condition [51]: 

                                

                   
                           (2.3) 
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Yi =  Values Features   

Xi = Values Label 

                     

b = Constraint Values 

By using Lagrange multipliers      
  and kernel deception, It results in the 

following double problem: 
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Eventually, the procedure will be: 
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2.11 K-Nearest Neighbors (KNN) Regression Algorithm 

(kNR) is an exemplar of a supervised learning method. Supervised 

learning infers a function learner from training data T, which is a set of 

training examples known as samples [52]. 

 The kNN regression evaluation is dependent on finding the proper 

number of k nearest neighbors to use in the prediction. A small k with 

less adjacent data narrows the regression region, resulting in less bias but 

more variance. A larger k, on the other hand, involves more contiguous 

data, which allows the regression factors to vary over a larger area, 
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resulting in greater bias and lower variance Steps to implement the KNN 

algorithm [53]. 

Step 1: Initially, K number of neighbors is selected. 

Step 2: Depending on the distance law, the point closest to the value of K 

is taken to be the new point 

Step 3: The number of data points, neighbors to K, is calculated in each 

class. 

Step 4: After the result set, the new data point is collected where you can 

calculate the neighbor values points as shown in algorithm (2.2) [54]. 

Algorithm (2.2): KNR Prediction  

Begin 

Phase Training Dataset: 

Step 1: Reading The Dataset.  

Step 2: Assign the Initial Value of K 1 

Step 3: Calculate The Distance (D) Between Each K Neighbor Points 

Step 4: Calculate the average of those neighbors to obtain predictor P 

Step 5: Determine Nearest Neighbors Based On Minimum Distance 

To Equation (2. 7) 

Step 6: For n  0 :  

Step7: Calculate The Distance Between This Predictor And Its 

Neighbors To Obtain Error (E_k (n)). 

Step 8:  n n+1 

    Step 9:  If E_k decreases, Increase K and go to step 3 

    Step 10: Else stop and return K argmin (E_k) [K at the minimum 

error] 

Testing Phase: 

Step 11: select the testing dataset  

Step 12:  Calculate the average of K neighbors 
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Step 13: Measure the distance between the test data and the average K 

neighbors  

  Step 14: implement the prediction  

  Step 15: Calculate RMSE, MAE using Equations (2.20) and (2.21) 

End Algorithm 

 

The KNN classifier uses a distance function to determine how 

different or similar two examples are. The equation defines the usual 

Euclidean distance d(x,y) between two instances x and y 

       √∑       
 

 

   

 (2.7) 

Where,    represents the     the feature element of instance x,    

represents the     the feature element of instance y and n is the total 

number of features in the dataset. 

For many years, pattern recognition and data mining have used and 

studied KNR regression. To improve the performance of the kNN 

regression in the regression analysis, a kernel estimator based on some 

asymptotic properties of KNR was used [55]. 

2.12 Deep Learning (DL) 

Deep learning refers to the acquisition of some type of knowledge 

Deep learning algorithms are widely used to increase complexity in 

contrast to standard machine learning algorithms. Deep learning also 

refers to the use of artificial neural network architectures that have a very 

large number of processing layers, unlike other methodologies of 

traditional neural networks. Dealing with complex deep learning 

methodologies gives the flexibility to analyze large amounts of data and 
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this gives a distinction to applications that use these methodologies such 

as industry, agriculture, and other applications to get better results [56]. 

So that we can simulate the activity of the human brain is by 

building a neural network. The deep neural network framework consists 

of three layers of input and outcome and a hidden layer that is usually 

placed in the input and outcome layer. The concept of deep learning is the 

total dependence of the deep neural network. It is a subsection of machine 

learning and uses aspects of artificial intelligence to classify and arrange 

data as shown in Figure(2.4) [57]. 

 

Figure (2.4): General Deep Neural Network Structure 

   

The most popular types of neural networks are Convolutional Neural 

Networks (CNNs) and Recurrent Neural Networks (RNNs)[58]. 

As there are very too several types of DL models, the theoretical 

overview will only cover Supervised Learning, more specifically 

prediction problems with RNNs, which are the basis for the LSTM and 

GRU and mixed with (ANN). 
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2.13 Recurrent Neural Networks (RNNs)  

RNNs are at the heart of modern approaches to a large number of 

common tasks [59]. 

 RNNs are useful for modeling sequential and time-series data. 

However, when using RNNs to inform decision-making, predictions by 

themselves are not enough, we also need estimates of predictive 

uncertainty [60].  

RNN represents a layer of the neural network. Because there are 

multiple layers stacked upon each other, an RNN is a deep neural 

network. They differ from other neural networks in the sense that the 

hidden layers are linked to time [61]. 

RNN is used to capture information across time dimensions and 

store it within the network. Being an effective tool to achieve desirable 

results in various fields of machine learning, few versions of (RNN) such 

as  (GRU) and  (LSTM) have been developed [62].  

RNN has significant advantages over temporal data processing. 

Existing RNN models usually train several temporal data that are 

correlated separately and ignore the correlation between the data [63]. 

A structured iterative interaction takes place inside the RNN which 

enables the sequential data processing by carrying the result of the 

previous time action as input to the current time action, in the time step 

the RNN neurons perform the same process to include current and prior 

input information to represent the hidden state of that time step. Often, 

RNNs have problems in learning long-range dependences and may fail to 

control long-range neural synchronization in recurrent escalation 

networks due to spontaneous activity [64].  

To handle this issue, there is a lot of suggested by the researcher 

approaches as gate-dependent, LSTM, GRU in RNN neurons to control 



Chapter Two                                                      Theoretical Background 

 
26 

the information flow. Gates optionally provide a means to allow 

information to pass through or pause quietly, balancing current period 

information contributions with historical information [65]. 

The illustration in Figure (2.5) of the elemental attention gate 

(shown in red) for (a) a general RNN block, where a standard RNN 

architecture can be an (RNN), (LSTM), or (GRU) and (b) a (GRU) block 

consisting of an array (N) GRU neurons. Also In the graph, each line 

contains a vector. Circles indicate element-wise operation, for example, 

element vector outcome or vector expansion. Yellow squares indicate the 

original (GRUs) with the output After N, the red square indicates output 

dimensions D, the same as the xt input dimension [65]. 

 

(a) Generic RNN block                    (b) Generic GRU block 

Figure (2.5): Generic RNN and GRU block [65] 

In time-series when data are interdependent, learning performance 

may deteriorate due to its insufficient ability to model long-term 

dependencies. By scenario where the current data points are related to the 

previous data points. Long-term dependence is the basis for time series 

forecasting. In addition, it feeds front-end neural networks that constrain 

inputs and targets to be vectors of fixed length, which also makes them 

unsuitable for sequential learning such as time-series unless they are 

tuned by ANN [62][66]. 
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RNN is an effective tool for capturing information especially time-

series across time dimensions and storing it within the network. Which 

are developed from versions of neural networks. Acceptance of feedback 

connections that can produce prior context information is a vital update in 

RNNs compared to feed-forward neural networks. In other words, RNNs 

have their internal memory, which gives them an advantage over other 

neural networks [67].  

 

 

 

 

 

 

 

Figure (2.6): The Architecture of RNN [67] 

Figure (2.6) Shows the architecture of RNN. Given an input time- 

series ,   x = {x1, x2,...…., xT}.  RNN computes the hidden state sequence 

h = {h1, h2……, hT} as well as the output sequence  y = {y1, y2,…….,yt} 

iteratively using the following set of Equation. 

                        (2.8) 

And 

               (2.9) 

In Equation (2.8), and Equation (2.9) 

 Whx : Input Hidden Weight  

 Whh: Weight State Hidden 

Wyh: Output Hidden Weight  
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and bh represents priority the hidden layer and the resulting layer is 

serialized. In addition, f(0) and g(0) are the hidden layers and the output 

layer the activation procedures [68]. 

The RNN uses the hidden state (ht) in the time step (t) to save the 

network. The hidden state captures all the information included in the 

previous time steps [67]. 

2.13.1 Long-Short Term Memory (LSTM) 

Used to smooth out the spread and fade of gradients when learning 

memory dependencies. For this reason, which is the standard for many 

serial modeling tasks, LSTMs and RNNs are widely relied upon [69]. 

LSTM models continuous sequence data, as well as depending on 

whether the sequences are tested uniformly. In this way, all data 

measurements are subject to duplicate fabric correlation .However, it is 

difficult for LSTM to model unequal periods in data sequencing. This 

occurs when measurements in a processing time series are not sampled at 

a uniform frequency. The problem of non-uniform sampling often occurs 

in industrial processes, which hinders the application of LSTM [70].  

RNNs are made up of a series of repeating neural network modules; 

this repeating module in standard RNNs would have a very basic 

structure, such as a single tanh layer as illustrated in Figure (2.7) [64].  

 

 

 

 

 

Figure (2.7):Module in a Standard RNN 

LSTM is a long-short term memory for recurrent neural networks 

RNN , which is considered one of the most famous and powerful neural 
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networks known, and it has evolved significantly in how to deal with 

continuous temporal data [71]. 

We also see the distinction of internal and external iteration with deep 

temporary learning by dependency in LSTM with memory blocks, which 

is a rather unique feature [64][71]. 

LSTM layers consist of blocks between memory that are repeatedly 

connected to a cell or memory unit. These cells consist of gates to 

determine when the past hidden states of the memory cell and additional 

update cells were lost. Thus allowing the network to make use of material 

knowledge as shown in Figure (2.9) [47][45]. 

To show how to control the input gate, with the input feature, xt takes 

the input data x, at time t, the input data flow to the cell. The forget gate 

determines when the contents of the cell's internal state are forgotten, and 

the output gate controls the flow to the outlet. The function of the cell in 

this regard is as follows [72]: 

                     
       (2.10) 

and; 

                     (2.11) 

And; 

  =       +         ) (2.12) 

And; 

         +      +  ) (2.13) 

And; 

               (2.14) 

Finally; 



Chapter Two                                                      Theoretical Background 

 
30 

                (2.15) 

The internal redundancy ct and the current output it which is equal to 

ht the currently hidden state are both computed at time t using gate 

parameters U and W (weight matrices) and with b (bias vector) learned in 

the process. 

 

Figure (2.8): Shows Input Feature In LSTM [72] 

 

The LSTM block consists of a cell state and a hidden state. The 

function of the input gate is to decide which values to update, while the 

forget gate controls which part of the previous cell state should be 

forgotten. Based on the input and forget gate, in the output gate the state 

of the new cell is calculated. In addition, the information that should be 

delivered to the next node is calculated, that is, it calculates the hidden 

state of the cell. In this illustration Figure (2.8), three-time steps and a 

dataset with three sequential data samples (  −1, +1) are visible. 

 

The central LSTM cell is shown in detail to reveal the processes 

within it. The network is only shown up to the output of the hidden layers 

(ℎ −1,ℎ ,ℎ +1), the output ŷ is not represented here. 
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Figure (2.9): The Structure of an LSTM Block [73] 

LSTM is a great RNN technology and is the most popular and widely 

used RNN, with the ability to train long and short-range dependency 

information as well as the ability to solve color gradient problems, 

continuous data, temperature, and other sequential applications. The 

LSTM algorithm is perfect for dealing with problems that have a lot of 

time-series correlation [74]. 

As for the input gate, the gate is a layer of sigmoid activation 

nodes, whose output is multiplied by the output of the tanh, the sigmoid 

of this input gate can stop any element of the input vector not required as 

this function outputs the values between 0 and 1, according to Equation 

(2.12). In addition, the forget gate determines whether the previous 

memory cell is useful for computing the current memory cell. As a result, 

the forget gate examines the input as well as the previous hidden state. 

This addition process, instead of multiplication, helps reduce the risk of 

gradient vanishing. This gate allows the network to understand the state 

variables that must be remembered or forgotten according to Equation 

(2.13). 
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Algorithm (2.3): LSTM Algorithm  

Input: X (current input) 

          H (previous hidden state) 

Output :H (current input) 

              X (previous hidden state) 

Begin 

Training phase  

Step 1: training ={(xt ,xt+1) t  1,2,………t1) and validation set x ,      

validation  {(xt,xt+1), t  t1+1,t1+2,…t2}. 

Step 2: initialize w randomly,   Val  

Step  3: adjusting W 

Step 4 : for epoch = 1 to n do  

Step 4-1: the memory state Ct-1 is taken by LSTM and it performs 

               a wise multiplication of the elements with the forgot gate (f)  

               CT= CT-1 * FT   , (f gate gives values 0 or 1) ,If f= 0 then past 

               memory state is fully forgotten ,If f= 1 then the past memory  

               state passed to the cell  

Step 4-2 : compute new memory state from input state and C
‘
t layer  

                 with present memory state Ct  

Ct= Ct+ (It * C
‘
t) 

                 Ct= present memory state at a time step, and it gets pushed  

                 through to next time  

Step 4-3: apply T and to Ct then do element-wise multiplication with 

the output gate C, That will be our current hidden state Ht, Ht 

= Tanh CT Pass Ct and Ht to next time step, then repeat the 

process itself. 

Step 4-4: compute output error.  X t+1-xt+1 , t  1, 2 ,…..t1 
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Step  4-5 : if error   0.001 then perform backward propagation for all  

              layer n-1 to layer 1  

Step 4-6 : update W :W = W + W 

Step 4-7: perform forward propagation recurrently to up data the  

                 network state 

Validation phase  

Step 4-8: read validation data  

Step 4-9: perform forward propagation recurrently to compute W 

Step 4-10: save the current W if epoch      then break 

Testing phase  

Step 5:  read test dataset  

Step 6:  perform forward propagation recurrently to compute Xe 

Step 7: Calculate RMSE, MAE using Equations (2.19) and (2.20) 

End Algorithm 

2.13.2 Gated Recurrent Units (GRU)  

The proposal of varied forms of RNN achieved amazing results for 

many applications, especially continuous serialization such as the long-

term memory module (LSTM) in 1997. But that didn't stop the 

developers from suggesting algorithms like GRUs which are the 

simplified performance of LSTM and require less training time with 

improved network performance based on its continuous data update [75]. 

proposed a gated recurrent unit (GRU) in 2014 that uses only two 

gates and can achieve accuracies comparable to the more complicated 

LSTM for some applications [76]. 

The Method in GRU is an identical or replica of the parameters of 

the simple RNN. Only use process update by x corresponding to these 
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gates are also corrected using random regression through the moment as 

they seek to reduce the loss/cost function [62][77]. 

The workflow of a gate recurring unit, for short a GRU, is an RNN 

iteration but the difference is in the process and gates associated with 

each GRU. RNN standard often has a problem that needs to be solved, 

the GRU integrates two mechanisms to operate the gate called the update 

rate and the reset gate as shown in Figure (2.10 ) [78]. 

 

Figure (2.10): Structure GRU 

2.13.2.1 Update Gate 

Previous data is updated by the update gate to determine its amount 

to pass through the next state. This is powerful because the model can 

copy all the information from the past and eliminates the risk of gradient 

fading [79]. 

2.13.2.2 Reset Gate  

The reset gate of the model is used to determine the value of the cell 

state for the previous information that needed to be discarded, In short, it 

decides whether the state of the previous cell is important or not [79]. 

First, the reset gate comes into play, Saving the data associated with 

its predecessor (ℎt-1) to new memory parameters. Previous time 
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parameters (ℎt-1) and current time (ℎ(x)) are converted from the correct 

multiplication using the weight matrix for the following reset gate(ℎt+1).  

Then it sends the updated data to the reset gate and multiplies it by the 

sigmoid function, to get a result rate between [0, 1]. Equation (2.16) is 

used to describe this operation after summarizing the above steps, the 

nonlinear activation function is applied and the following sequence is 

generated [79][62][77]. 

R = (    [   1] +  ) 

                 = (       1+      +  ) 

 

(2.16) 

where R  = reset gate,    = bias of the reset gate 

 

Figure (2.11): Simple Neural Representation [80] 

In Figure (2.11), a simple neuronal block model shows how to make 

the resulting constants ranging from [0 to 1]. The inputs and outputs of 

the GRU are x(t) and h(t). At h(t+1) represents the future time, and h(t-1) 

represents states in the previous moment from the current time h(t). Unlike 

other neural networks, r(t) and z(t) are both basic structures in the GRU, 

which are called gate reset and gate refresh. The sigmoid function is an 

activation of the neural network. The resulting filter x(t) is the product of 
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the value processing by the reset gate [78][81]. In the equations below, 

the calculation process is illustrated:  

Z = (    [   1,xt]+  ) 

        =(        1+      +  ) 

 

(2.17) 

where    = update gate,    = bias of the update gate as shown in 

Equation (2.18). When the reset gate is 0, all memory data is empty. 

When the reset gate is set to 1, it means that all of the memory data has 

been transferred to the current GRU [78][81]. 

ℎ   = tanh( ℎ  [   ℎ −1 ,  ]+ ℎ ) 

             =(    ℎ (     ℎℎ  ℎ −1+  ℎ    + ℎ )) 

 

(2.18) 

Where ℎ     candidate hidden state at time t,  ℎ  = bias of candidate hidden 

state.  

GRU can solve the vanishing gradient problem by using a hidden state, it 

calculates hidden state ℎ  at time t from the output of the update gate  , 

previously hidden state ℎ −1 and candidate hidden state ℎ   is calculated in 

Equation (2.19) [78][81]: 

ℎ   (1−  )  ℎ −1+   ℎ   (2.19) 

2.14 Artificial Neural Networks (ANNs) 

The biological Neural Network is thought to be the primary natural 

source principle of the Neural Network, which has approximately 10 

billion neurons connected via 100 trillion interconnections in the human 

brain. Neurons in Neural Networks (NNs) process information and data 

[82].  

The specific neurons communicate with each other via a 

connection known as synapses, which have a set of variables such as 
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weights. As a result, Neural Networks have parallel processing 

distributed systems [83], and Figure (2.12) depicts biological neurons. 

 

Figure (2.12): Depicts Biological Neurons. 

ANN models perform very well in the field of flow prediction. 

However, there is another area for improving artificial neural network 

modeling performance; For example, the efficiency of any artificial 

neural network-based prediction model can be significantly improved by 

using multiple input parameters chosen from sensitivity analysis and 

using hybrid models [84]. 

ANNs are used to predict the behavior of complex systems, and in 

recent years, the ability of ANN to estimate the viscosity of liquids has 

convinced researchers to apply this powerful tool in their research[85]. 

ANNs usually consist of three layers, the external inputs are data, feeders, 

and densities, and the nodes represent their labels [85][86]. 

Weighted neural networks make connections between the input and 

output nodes through the weights of the connected neurons, for which 

feedback algorithms and regressive functions are used [85]. 

In the hidden layers, there are neurons present and dependent on 

them to function the hidden layers, such as the sine function, where the 

sum of its information comes from input or output nodes through feed-

forward or from output nodes through revisions. Where the output value 
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of the neuron is multiplied by the weighting value after passing the 

nonlinear function [58] as shown in Figure (2.15). 

 

Figure (2.13): Structure of ANN 

2.15 Methods of Evaluation 

There are many criteria for evaluating the performance of the 

proposed ML techniques, including the commonly used statistical model, 

including mean absolute error (MAE) and root mean square error 

(RMSE). 

MAE is the mean absolute error of the expected y-values relative to the 

actual x-values and is given by[87]. 

    
 

 
∑|     |

 

   

 

(2.20) 

 

 

 

RMSE is a measure of the level of the spread between the actual x-

values about the average of the expected y-values. can be expressed as 

[88]: 
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Chapter Three 

The Proposed System 

3.1 Introduction 

porosity forecasting and evolution through seismic data play an 

important role in oil reservoir exploration and production of oil. With the 

advancement of artificial intelligence and machine learning, many 

achievements have been made in oil reservoirs by predicting the reflected 

signals for seismic detection of reservoirs. However, due to factors such 

as economic cost. Type of applications, and tools, it is often difficult to 

obtain suitable and efficient samples of oil tank seismic data for machine 

learning. In this case, this will greatly affect the prediction accuracy of 

the oil reservoir and its production. 

This chapter presents a proposed model for a prediction of porosity 

resulting from seismic data of oil reservoirs by testing algorithms dealing 

with time series such as SVR and KNR as well as LSTM and hybrid 

algorithm (LSTM with GRU) and then the proposed model will be 

produced the best result among them. Both systems share the same 

Seismic-dataset and structure, but the first model is a prediction based on 

a machine learning algorithm, and the second model prediction is based 

on a deep learning algorithm. 

This chapter also explains how to create a new Seismic dataset in 

detail and the application used to collect and process the data, in addition 

to explaining each stage of the proposed system and the tools and 

algorithms used. 
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3.2 A Structure of the Proposed System 

 The basic idea of the proposed model is that porosity is considered 

one of the most petrophysical factors, which has an important impact on 

the determination of oil reservoirs, so determining it with minimum error 

is of great importance to reduce the cost and time to discover oil 

locations. 

Therefore, the proposed works aim to design and implement the 

model to predict a porosity resulting from the seismic dataset of oil 

reservoirs based on machine learning and deep learning algorithms. 

  In addition, the results of the machine learning algorithms will be 

compared with the corresponding results of the deep learning algorithms 

to determine the best performance of the algorithm in determining the 

porosity resulting from the database.  

Figure (3.1) shows the general block diagram of the proposed 

model, which includes eight stages: Acquisition and load the seismic 

dataset, preprocessing dataset, selection features using correlation matrix, 

reshape dataset, splitting the dataset, prediction stage which is divided 

into two branches:  

(i) uses machine learning algorithms, which are Support Vector 

Regression (SVR) and K Neighbor Regression (KNR). 

(ii) uses deep learning algorithms which are long-term memory 

(LSTM) and Gated Recurrent Units (GRU), and the last stage 

Performance evaluation using (MAE & RMSE) measurements. 
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Figure (3.1): A General Block Diagram of the Proposed Model. 
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 Each stage of the proposed model depends on a certain algorithm 

or techniques that cooperate in order to achieve the objectives of the 

proposed model. These stages are explained in detail as follows, as shown 

in Figure (3.1). 

3.2.1 Acquisition And Load Seismic Dataset Stage 

Data was collected from the Ministry of Oil on one of the oil wells 

that are still under exploration. One of the advantages of this data is that it 

is processed by special programs. Seismic data is passed through several 

stages of processing until it reaches its final form, and then kept in an 

SEG-Y format. Seismic data is an example of very big data, so an SEG-Y 

file is very large and can consist of thousands of rows and columns. 

This work will choose to analyze not the seismic data itself but the 

attributes of the seismic data because the features are more useful than 

raw seismic data in that many of these features will be nonlinear, thus 

increasing predictability. The second reason is that there is often a benefit 

in dividing the input data into parts. This process is called feature 

extraction, and it can often dramatically improve performance by 

reducing the dimensions of the data before it is used to train the system. 

22 seismic features were derived from the seismic data. 26 seismic 

features represent the maximum number of features in Emerge. In 

Emerge, the size of the seismic data is indicated by the number of 

impacts. Seismic features consist of thousands of rows and columns, and 

each column is called a trace, so each feature contains hundreds or 

thousands of traces. Dealing with all traces is a very extensive and time-

consuming method. For this reason, the algorithm was applied to one 

trace per feature. 
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Table (3.1) is illustrated each Feature’s name, abbreviations, and 

description. The seismic dataset deals with porosity prediction and is the 

objective that attempts to predict the magnitude of this property at all 

locations from seismic data. The dataset contains 1235 samples of 

seismic data that are inversions, for which time series have been used 

rather than depths of seismic inversions as they have the potential to be 

sensitive to very high prediction cycles. 

Table (3.1) Seismic Dataset. 

No 
Seismic 

Feature 
Abbreviate Description 

1 
Amplitude 

Envelope 
AE 

Magnitude Of The Complex Trace, 

Defined By The Trace And Its Hilbert 

Transform 

2 

Amplitude 

Weighted 

Cosine Phase 

AWCF 

Product Of The Amplitude Envelope 

And The Cosine Of The Instantaneous 

Phase. 

3 

Amplitude 

Weighted 

Frequency 

AWF 
Product Of The Amplitude Envelope 

And Instantaneous Frequency. 

4 

Amplitude 

Weighted 

Phase 

AEP 
Product Of The Amplitude Envelope 

And Instantaneous phase. 

5 
Apparent 

Polarity 
AP 

Average Of The Amplitude Spectrum 

Over A Small Window Around The 

Time  Sample 

6 
Average 

Frequency 
AF Signed Amplitude Envelope 

7 

Cosine 

Instantaneous 

Phase 

CIP The Cosine Of Instantaneous Phase 
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8 
Derivative 

 
D 

Derivative Of The Input Trace 

Calculated As The Difference Between 

Adjacent Samples This Tends To 

Increase The Frequency Content And 

Changes Peaks To Edges Sharpening 

The Seismic Image. If You Use A 

Single Sinusoidal Component, 

Differentiation Increases The High-End 

Frequency Content Of The Signal And 

Rotates Is By A 90 Phase Shift 

9 

Derivative 

Instantaneous 

Amplitude 

DIA 
Derivative Of The Amplitude Envelope 

Of The Input Trace. 

10 
Dominant 

Frequency 
DF 

Maximum Of The Amplitude Spectrum 

Over A Supply The Frequency Small 

Window Around The Time Sample 

Parameters. 

11 
Filter 5/10 – 

15/20 
 

5/10 – 15/20 Bandpass Filter Slice Of 

The Input Trace 

12 
Filter 15/20 – 

25/30 
 15/20-25/30 Bandpass Filter Slice 

13 
Filter 25/30 – 

35/40 
 25/30-35/40 Bandpass Filter Slice 

14 
Filter 45/50 -

55/60 
 45/50 – 55/60 Bandpass Filter Slice 

15 
Filter 55/60 -

65/70 
 55/60 – 65/70  Bandpass Filter Slice 

16 
Instantaneous  

Frequency 
IF 

Not That +180 And -180 Should Be 

Give The Same Color In The Display. 

17 
Instantaneous  

Phase 
IP 

Phase Of The Complex Trace, Defined 

By The Trace And Its Hilbert 

Transform. 

18 Integrate I The Integration Of The Data Trace 
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19 

Integrated 

Absolute 

Amplitude 

IAA 
Integration Of The Amplitude Envelope 

Of Input Trace. 

20 
Quadrature 

Trace 
QT 

The Out Of Phase Component Trace, 

With A -90
0
 Phase Rotation Of The 

Input Trace. 

21 
Second 

Derivative 
SD 

Derivative Operation Applied To The 

Derivative Of The Input Trace. 

22 

Second 

Derivative   

Instantaneous 

Amplitude 

SDIA 

Derivative Operation Applied To The 

Derivative Of The Amplitude Envelope 

Of The Input Trace. 

 

3.2.2 Preprocessing Dataset Stage 

 After the collected seismic dataset, the preprocess includes 

checking the quality of the seismic data and ultimately improving the 

types of inputs, chosen steps, and time frames. It directly affects the 

prediction model's results and their accuracy. 

 Preprocessing seismic datasets involves three sub-steps compute 

Mean Absolute Error (MAE), check data types where only numerical data 

(float64) will be used in prediction modeling, and check for missing data 

to ensure there are no missing values in the data). The details of the 

preprocessing steps are present in the algorithm (3.1) . 
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Algorithm (3.1): Preprocessing Seismic Dataset  

Inputs: Load Seismic Dataset  

            N=number of features in a dataset 

Output: Clear Seismic Dataset 

Begin  

Step 1: Read the dataset. 

Step 2: For i=0 to N do 

Step 3: Compute the MAE of the feature using equation (2.20 ) 

Step 4: Check the missing data in the feature 

Step 4-1: Find the Null cell (NaN) then replace the Null cell with 

feature MAE.        

Step 5: Go to step 2 and read the next feature until complete all 

Features are. 

Step 6: Check the data type in the feature must be =float64 

Step 7: End For. 

End Algorithm 

 

3.2.3 Feature Selection Stage 

Feature selection is the third stage in the proposed system. It is the 

process of reducing the number of features to improve performance and 

reduce the computational cost of the proposed model. The seismic dataset 

consists of 22 features; the correlation matrix method is used to identify 

the important features as shown in Figure (3.2). 
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Figure (3.2): A Flowchart of the Correlation Matrix-based Feature 

Selection Method. 

 The correlation matrix creates a 2-domination matrix, where the 

rows and columns represent the 22 Features of the seismic dataset. Each 

location in the correlation matrix includes the value of the correlation 

coefficients of two features or pairs of features using Equation (2.1). The 

values of the correlation matrix are limited in the range [-1,0,1]. When 

the correlation value approaches 1, the correlation between the features is 

strong, but if it is 0, it is weak, and between them, the correlation value is 

YES 

NO 
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medium. In this method, the absolute is used to of the negative values of 

the correlation coefficient.  

As shown in Figure (3.2), any feature with a correlation value > = 

Threshold = 0.9 is considered to be an important feature. When the value 

of the features is less than the threshold, it ignores this feature. 

Based on the correlation matrix, if two features are highly 

correlated, only one of them will be kept. Features that correlate with 

another feature by threshold or above will be removed.  Therefore, 4 

highly correlated features are removed which are: [CIP, DF, IP, QT] and 

will keep 18 Features which are: [ AF , AP , AWCP , AWP , D , DIA , 

F15-36 , F25-40 , F35-50 , F45-60 , F50-65 , F55-70 , I , IAA , IF , SD , 

SDIA]. 

3.2.4 Reshape Dataset Stage 

This stage aims to reshape the input data into 3 dimensions matrix 

[samples, timesteps, features] to optimize preprocessing input data into 

prediction models. For the prediction of time-series data, the model has to 

estimate features from the previous values. So, if the desired output is 

f( ), the input feature should be f (  − 1). 

 Time series supervised function is designed to take samples at time 

{  − n,   −   − 1, …,  − 1} as input for the machine learning and the 

output will be sampling at time {  ,  + 1, …,  +  }. For the current 

application, the seismic data are sampled every second, and hence the 

input is the previous second and the output is the current second, so 

timesteps are equal to one and the input matrix-shaped in the form 

[samples, 1, features]. Figure (3.3) shows the time-steps for the data when 
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the number of features (f ) =18 and input data at a time (t-1) to the 

prediction model and the output data at a time (t). 

Figure (3.3) Timesteps for Data.  

3.2.5 Splitting Seismic Dataset Stage 

After selecting 18 features from the input data set using correlation 

matrix as illustrated in the previous stage, this stage indicated splitting 

data set into 80% training and 20% testing for machine learning 

algorithms and splitting the dataset into 80% training and  20% testing 

and validation for deep learning algorithms. 

3.2.6 Prediction Stage 

 The proposed model in the prediction stage is divided into two 

branches, which are  

1) ML machine learning using SVR & KNR algorithms. 
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2) Deep learning using LSTM and a proposed hybrid LSTM & GUR 

algorithm. 

3.2.6.1 Prediction Based on Machine Learning   

The seismic data is a continuous data type that means a sequence of 

observations taken sequentially in time, so this work takes models that 

deal with continuous data to improve prediction. The most common and 

effective models with continuous data are Support Vector Regression 

(SVR) and K Neighbor Regression (KNR) models. The details for each 

model are described as follows: 

i. SVR Model 

SVR allows quantifying the acceptable error in the proposed model 

and will find a suitable line or super planar with higher dimensions to fit 

the seismic dataset. The most important SVR parameter is the Kernel 

type. It can be -Linear - Polynomial - Gaussian SVR. The SVR has to 

obtain multi-dimensional input and a single output as shown in Figure 

(3.4). 

 

 

 

 

 

 

 

Figure (3.4): General Structure of the SVR.  

Therefore, the proposed model has to pick one specific feature to 

predict using all the features including the one it intended to predict. The 

details of prediction porosity resulting from the seismic data method of 

oil reservoirs using SVR .  
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ii. KNR Model 

The KNR algorithm uses to predict the values of any new data 

points. This means that the new point is assigned a value based on how 

closely it resembles the points in the training set. The details of 

predication porosity resulting from the seismic data method of oil 

reservoirs using KNR . 

3.2.6.2 Prediction Based on Deep Learning   

Prediction time series is the most difficult type of predictive 

modeling because it adds more complexity through the dependence of the 

sequence on the input variables. A powerful type of neural network 

designed to handle sequence dependencies is called an ANN. GRU and 

LSTM are used in deep learning because they are very large structures 

that can be successfully trained. The details of the proposed LSTM and 

GRU are described as follows: 

i. LSTM Prediction Model 

    LSTM can hold information for long periods due to its chain-like 

structure, where it can solve tasks that are difficult to implement using 

traditional RNN. LSTM neural networks are structured for sequential data 

processing. Network status at any time depends both on the present and 

preceding input of the network. The type of our model architecture is 

many-to-many. LSTM consists of three main gates: 

 Forget gate: there is information that is no longer needed to 

complete the task, this gate removes it and this improves the 

performance of the network. 

 Input gate: through this portal, information is added to 

memory cells.  
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 Output gate: this portal produces the necessary information in 

hidden layer output.  

The LSTM cell is created from the input layer, the previously 

hidden cell ℎ −1 is entered and the new sequence    is entered, where the 

first step of this combined entry is that it is crushed through the tanh layer 

where tanh takes large or small variable numbers and converts them at a 

specific rate between (-1,1) to generate candidate memory cells     

according to Equation (2.16). 

After completing the above parts, the cell state    of LSTM is 

updated according to Equation (2.14). This equation connects the pre-

state   −1 and the present temporary-state       Through the output gate, 

LSTM outputs the specified state, based on the cell status, where runs a 

sigmoid layer to determine the unit state section to be exported according 

to Equation (2.15). In addition, deals with current output    and state    

with a tanh layer to write a new hidden layer state ℎ  according to 

Equation (2.15). 

In this model, the input is 18 features, two hidden layers each layer 

consisting of 1235 nodes of LSTM, and 18 outputs, Connected in fully 

connected layers form as indicated in Figure (3.5). 
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Figure (3.5): Prediction LSTM Model. 

ii. A Proposed LSTM, GRU, and ANN Prediction Model 

  The proposed LSTM, GRU, ANN prediction model aims to 

improve the results of prediction by using the output of the LSTM and 

GRU model. In section (i) the LSTM models were presented, while this 

section will be a hybrid LSTM, GRU, and ANN algorithms. 

The proposed model included three hidden layers, the first layer 

includes 1235 LSTM nodes, the second layer has 1235 GRU nodes and 

the third layer has 1235 ANN nodes, the output of the first layer 

represents the input for the second layer and the output of the second 

layer represents the input for the third layer was proposed as shown in 

Figure (3.6). 
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Figure (3.6): A Proposed Hybrid  LSTM, GRU, and ANN Regression 

Model. 

As shown in Figure (3.6), the input is 18 features, three hidden 

layers, the first hidden layer consisting of 1235 nodes of LSTM and the 

second hidden layer consisting of 1235 nodes of GRU and 1000 outputs 

as well as the layer consisting of 1235 nodes of GRU and the third" 

hidden layer consisting of 1235 nodes of ANN and 18 outputs, connected 

in fully connected layers form. 

The details of the proposed Hybrid  LSTM, GRU, and ANN Model 

are illustrated in the algorithm (3.1) and algorithm (3.2). 

 

Algorithm (3.1) Hybrid LSTM, GRU, Prediction  

Input: To The LSTM cell  

               X (current input) 

              Ht-1 (previous hidden state) 

 Output: From The GRU cell  

               Ht (current hidden state) 
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Begin 

Training phase  

step 1: Training   {(  ,   +1), t   1, 2, · · ·, T1} and validation set X 

            validation   {(  ,    + 1), t   T1 + 1, T1 + 2, · · ·, T2},  

step 2: For epoch   1 to 100 − epoch do  

            Perform forward propagation recurrently using the Equation 

from  (2.15) to (2.19). 

Step 3: GRU cell takes the previous hidden state Ht-1 and generates the 

             candidate hidden state 𝐻̂  using equation (2.13). 

 Later passed this entire information to the tanh function, the resultant 

value is the candidate’s hidden state. 

Step 4: Update hidden state to 𝐻   using the following Equation(2.19) If  

f value    is 0 then new hidden 𝐻  state depends on the              

candidate state 𝐻̂  if the f value is 1 then the new hidden 𝐻  the state 

depends on the previous hidden state 𝐻    . 

step 5: The output of each GRU state 𝐻  is fed to the next one. 

Step 6: Compute output error: xet+1 − xt+1, t   1, 2, · · ·, T1 

Step 7: Perform backward propagation  

Testing phase  

Step 8: Perform forward propagation recurrently to update the network 

             states.  

Step 9: Perform forward propagation recurrently to compute Xe   

            {xet+1, t   T1 + 1, T1 + 2, · · ·, T2} 
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Step 10: Save the current Θ.  

           if epoch ≥ min − epoch then 

            The LSTM used in the experiment ran for 300 epochs to train 

            to the optimal results.70 batch size was used for the LSTM 

           break.  

End Algorithm 

Algorithm (3.2) Hybrid GRU, ANN Regression Prediction porosity  

Input: features from previous layers  

Output: N features for time  

Begin 

Step 1: Initialize weights, set to small random values, not zeros. 

Step 2: Forward- propagation: - each input unit (xi ,i 1,…,n) receives 

input signal xi and broadcasts it to all units in the first hidden layer 

above (the hidden units). 

Step (2.1): Calculation the value of each hidden unit (Zj, j=1,...,n), then 

apply active function(tanh) to find the output signal and send this signal 

to all units in the above-hidden layer. 

Step (2.2): Repeat step 2.1 on all hidden layers, the output signal from 

the last hidden layer sends to all units in the above layer (output units). 

Step (2.3): Calculate value each output unit (yk, k 1,…,n) and apply 

active function(softmax) to compute the output signals. 

Step3: Back-propagation of error: each output unit (yk, k 1,…,n) 

receives a desired class corresponding to the input training class, and 

computes its error. 

Step (3.1): Calculate the gradient j(n) for neuron j is an output node 

and for neuron, j is a hidden node. 

Step(3.2): Compute the weight changes Δwji(n) for the weight 
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connecting neuron i to neuron j. 

Step (3.3): Update the weights of the network in layer L. 

Step (3.4): Update the bias of the network in layer L. 

Step4: Increase iteration and repeat the process until the weights are 

stable. 

End 
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Chapter Four 

Experimental Results and Evaluation 

4.1 Introduction 

This chapter describes the results of prediction models, and the 

proposed model will be the one that provides the best results among the 

rest of the results. The following sections describe experimental results 

from the pre-processing and forecasting phases, which include training 

and test. 

4.2 Implementation Environment 

The proposed experiments are performed under a specific system 

requirement such as Windows-10 operating system, Hardware processor: 

Core i5- CPU 3320M, 2.60 GHz, and (8GB) RAM. The code was written 

in python to analyze and learn data then predict 

4.3 Results of the Proposed Model  

 The proposed model aims to improve the quality of prediction by 

decreasing the error rate in locating oil wells that contain high-quality oil. 

To achieve this goal, the proposed model followed several stages and it 

applied on a seismic dataset that has been obtained and collected, in each 

stage, it uses technique or algorithm to reach the predictive stage using 

machine learning and deep learning. The results of each step will be 

presented and discussed in this section. 

 

 



Chapter Four                              Experimental Results And Evaluation 

 
60 

4.3.1 Clarify Load Dataset 

The seismic dataset includes 22 chronological-dependent features on 

which the models will be trained and tested, these features are (AE, AF, 

AP, AWCP, AWP, CIP, D, DF, DIA, F15-30, F25-40, F45- 60, F50-60, 

F55-70, I, IAA, IF, IP, QT, SD, SDIA) Table (4.1) shows a sample of the 

original values for the input dataset. 

Table 4.1: Original Seismic Dataset [5 rows × 22 columns]. 
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4.3.2 Results of the Preprocessing Dataset  

The preprocessing dataset represents statistical operations to 

preprocess entered data and address the problems it suffers, to improve 

the performance of the proposed model.  

The first step in preprocessing is to check data type. The Check data 

type is process takes input row in each column and check if the data type 

is float 64. If the data type is not floating 64, remove the data from the 

features because it is considered irrelevant data like special symbols and 

characters. Check type of the dataset is shown in Figure (4.1). 

 

Figure 4.1: Check Data Type in the Preprocessing Seismic Dataset. 

 

After checking data type, the check missing data is done as 

illustrated in Figure (4.2). To determine any null values, each row was 

examined with data versus each column. In the case of null values, the 
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Mean value is replaced for all other values of a similar time in the 

column's data set. 

 

Figure 4.2: Check Missing Data in the Preprocessing Seismic Dataset. 

Figure (4.3) presents the sum of the null values for each column, 

where it shows that the columns contain zero of the null values, this 

denotes that there are no missing values in the dataset. 

 

Figure 4.3: The Dataset After using Missing Data in the Preprocessing 

Seismic Dataset. 
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4.3.3  Results of the Feature Selection using Correlation Matrix Method 

Feature selection is the process used to select the most important 

input features to improve the accuracy prediction model and reduce 

computational cost. The correlation matrix method is an efficient and 

faster method used in the feature selection process. Figure (4.4) shows the 

correlation matrix, the vertical and horizontal lines indicated in 22 

attributes in the data set, all the diagonal elements of the correlation 

matrix must be a value of 1, and the diagonal elements of the correlation 

matrix are divided into two parts (upper and lower triangle) with the same 

values which lie in the ranges between [1 to -1]. 

 

Figure (4.4): The Correlation Matrix for Features in Dataset. 

As illustrated in Figure (4.4), the dark colors represent the weak 

relationship between features such as A-E with QT= -0.0008, A-E and 

SD = -0.1 , and A-E with SDIA= -0.7.A light colors represent the strong 

relationship between features such as: AF with DF=1 ,AWP with IP =0.9, 

I with QT =0.9, AWCP-CIP=0.9,A-F with F50-65 =0.7,and A-F with IF 

=0.8 and so on. 
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Based on the above correlation matrix, if two features are highly 

correlated, only one of them will be kept. Features that correlate with 

another feature by 'threshold =0.9' or above will be removed. Therefore, 

will remove four features which are:['CIP', 'DF', 'IP', 'QT'] and will keep  

18.   

4.3.4 Results of the Feature Selection Using Reshape Dataset Method 

Reshape the data so that the prediction of t time steps is calculated 

based on the given number of past and present time step features. In this 

step, the conversion from 2D dataset [samples, features] to 3D models, 

time steps, features]. Table (4.2) shows the results of Reshape technique. 

Train input Shape:(986, 1, 18) and Train Y shape:(986, 18).Test X shape: 

(247, 1, 18) Test y Shape:(247,18). 

Table 4.2: Seismic Dataset After Applied the Reshape Technique. 
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4.4 Results of the Prediction Model  

The proposed prediction model includes two branches: Machine 

Learning branch based on ( SVR and  KNR ) algorithms; Deep learning 
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branch based on LSTM and a proposed hybrid LSTM, GUR, and ANN  

algorithm. Results from each branch are presented in this section. In 

addition, this section reviews the compared results between the two 

branches to find the best performance. 

4.4.1 Results of the Machine Learning Prediction Model  

 This section introduces the implementation and evaluation of the 

Support Vector Regression (SVR) and K Neighbor Regression (KNR). 

To measure the performance efficiency of the algorithms used in this 

section. will rely on the metrics: absolute error (MAE) using an Equation 

(2.20) and root mean square error (RMSE) using an Equation (2.21). And 

can explain the results of the measurements that the lower the error rate, 

the more accurate the model used. 

4.4.1.1 Results of the SVR Prediction Model  

The input to the SVR prediction model is 18 features to apply 

prediction for each feature . 

Table (4.3) presents the results of error metrics (MAE)and (RMSE) 

for the four cases of partition seismic dataset:60%Training and 40% 

Testing, 70%Training and 30% Testing, 80%Training and 20% Testing, 

and 90%Training and 10% Testing. 

Table (4.3): Results of MAE and RMSE of the Prediction in SVR Model 

Dataset Splitting Ratios MAE RMSE 

60% Training &40 % Testing 0.289 0.334 

70% Training &30 % Testing 0.297 0.341 

80% Training &20 % Testing 0.264 0.300 

90% Training &10 % Testing 0.238 0.255 
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As shown in the table above the best performance of the SVR with a 

case of splitting dataset 90% Training and 10% testing, where the 

MAE=0.238 and RMSE =0.255. Figure (4.6) illustrated the accuracy 

(prediction and actual ) of prediction for all features using the SVR 

model. 

Predict the A-E Feature Predict the AF Feature 

  

Predict the AP Feature Predict the AWCP Feature 

  

Predict the AWP Feature Predict the D Feature 

  

Predict the DIA Feature Predict the F15-36 Feature 
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Predict the F25-40 Feature Predict the F35-50 Feature 

  

Predict the F45-60Feature Predict the F50-65 Feature 

  

Predict the F55-70 Feature Predict the I Feature 
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Predict the IAA Feature Predict the IF Feature 

 
 

Predict the SD Feature Predict the SDIA Feature 

  

Figure (4.5): Accuracy of Predicted Results in the SVR Model. 

4.4.1.2 Results of the KNR Prediction Model  

The KNR algorithm uses to predict the values of any new data 

points. This means that the new point is assigned a value based on how 
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closely it resembles the points in the training set. The input to the KNR 

prediction model is 18 features to apply prediction for each feature . 

 Table (4.4) shows the results of error metrics (MAE) and (RMSE) 

for the four cases of partition seismic dataset:60% Training and 40%  

Testing, 70%Training and 30% Testing, 80%Training and 20% Testing, 

and 90% Training and 10% Testing. 

        Table (4.4): Results of MAE and RMSE of the Prediction in KNR Model 

Dataset Splitting Ratios MAE RMSE 

60% Training &40 % Testing 0.332 0.392 

70% Training &30 % Testing 0.332 0.386 

80% Training &20 % Testing 0.296 0.344 

90% Training &10 % Testing 0.276 0.301 

 

As shown in the table above the best performance only of the KNR 

with a case of splitting dataset 90% Training and 10% Testing, where the 

MAE=0.276 and RMSE =0.301. Figure (4.6) is illustrated the accuracy 

(prediction and actual) of prediction for all features using the KNR 

model. 

Predict the A-E Feature Predict the AF Feature 
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Predict the AP Feature Predict the AWCP Feature 

  

Predict the AWP Feature Predict the D Feature 

  

Predict the DIA Feature Predict the F15-36 Feature 

  

Predict the F25-40 Feature Predict the F35-50 Feature 
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Predict the F45-60Feature Predict the F50-65 Feature 

  

Predict the F55-70 Feature Predict the I Feature 

 

  

Predict the IAA Feature Predict the IF Feature 

  

Predict the SD Feature Predict the SDIA Feature 
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Figure (4.6): Accuracy of Predicted Results in the KNR Model. 

When the performance comparison between SVR and KNR is based 

on the results of the error measures (MAE and RMSE) as shown in 

Tables (4.3 and 4.4), it is found that SVR has the best over the results 

from the KNR prediction models. 

4.4.2 Results of the Deep Learning Prediction Model  

   This section will display the results obtained from the 

implementation of the prediction models (LSTM) and Hybrid (LSTM, 

GRU, and ANN).  

Seismic dataset is divided into two sets: Training Set: It is the set of 

data that is used to train and make the model learn the hidden 

features/patterns in the data. Testing Set: The test set is a separate set of 

data used to test the model after completing the training. It provides an 

unbiased final model performance metric in terms of accuracy metrics 

mean absolute error (MAE) using Equation (2.20) and root means square 

error (RMSE) using Equation (2.21). The lower the error ratio represents 

the greater the accuracy of the model. 
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4.4.2.1 Results of the LSTM Prediction Model  

The input dataset to the LSTM prediction model is reshaping data 

in 3d form [Samples, Time steps, Features]. As long as the model is 

trained to take one millisecond of inputs to predict the porosity resulting 

from seismic data of oil reservoirs for the millisecond, the time step equal 

to one, it will be the form of the input for training and testing data as 

[samples, 1, features]. 

 The LSTM model includes two hidden layers, each of which 

comprises 1000 LSTM nodes. LSTM utilized 100 epochs for training and 

a batch size of 64 for the training dataset to avoid over fitting.  

LSTM  model has two layers that are fully connected, the first 

layer is a hidden layer one which has 1000 nodes of LSTM. The inputs 

are 3D format  :  [18,1,18] but the output in 2D format: [18,1000] .The 

second layer is a dense layer which is the last layer from which the output 

was obtained, and has 18 nodes. The input into the dense layer is in 2D 

format [18,1000] because it's coming from the output of the first layer 

and the output is in 2D format [18,18]. 

The summary of the LSTM model and the total number of 

parameters in the network and the number of parameters that have been 

trained are shown in Table (4.5). 

Table 4.5: Results of MAE and RMSE of the Prediction in LSTM Model 

Dataset Splitting Ratios MAE RMSE 

60% Training &40 % Testing 0.11 0.13 

70% Training &30 % Testing 0.145 0.158 

80% Training &20 % Testing 0.023 0.029 

90% Training &10 % Testing 0.038 0.043 
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As shown in the table above, the performance of the predictive 

model was studied and its performance was evaluated based on the results 

of error measures in four cases of database partitioning. The study shows 

the best performance of the LSTM model with 80% Training & 20% 

Testing case, where the MAE= 0.023 and RMSE= 0.029.While in case 

90% Training &10% Testing the MAE = 0.038 and RMSE = 0.043 ,in 

case of the 60% Training &40% Testing the MAE= 0.11 and RMSE= 

0.13.The Lowest performance of the LSTM with 70% Training and 30% 

Testing, where MAE= 0.145 and RMSE= 0.158. 

Figure (4.10) shows the loss of the LSTM model, the loss for 

training is approximately =0.25 and for testing is approximately = 0.07 in 

100 epochs. 

 

Figure (4.7): Loss of the LSTM Model. 
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Figure (4.8) illustrated the accuracy of prediction for all features 

using the LSTM model. 

Predict the A-E Feature Predict the AF Feature 

 
 

Predict the AP Feature Predict the AWCP Feature 

 
 

Predict the AWP Feature Predict the D Feature 

  

Predict the DIA Feature Predict the F15-36 Feature 
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Predict the F25-40 Feature Predict the F35-50 Feature 

  

Predict the F45-60 Feature Predict the F50-65 Feature 

  

Predict the F55-70 Feature Predict the I Feature 
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Predict the IAA Feature Predict the IF Feature 

  

Predict the SD Feature Predict the SDIA Feature 

  

Figure 4.8: Accuracy of Predicted Results in The LSTM Model. 

4.4.2.2 Results of the Hybrid Prediction Model  

 The proposed hybrid prediction model is consisting three layers 

that are fully connected, the first layer is hidden layer one which has 1000 

nodes of LSTM and the second layer is hidden layer two which also has 

1000 nodes of GRU. In the first hidden layer, input and output data are in 

3D format, while in the second hidden layer, input data is in 3D format 

and output data is in 2D format. This is because the outputs from the first 

hidden layer are as inputs to the second hidden layer. The dense layer 

which is the third and last layer from which the output was obtained, has 

18 nodes. 
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Table (4.6) shows results of the performance of the Hybrid 

prediction model using (MAE) and (RMSE) in four cases of splitting 

dataset. 

 Table 4.6 Results of MAE and RMSE of the Prediction in Hybrid Model 

Dataset Splitting Ratios MAE RMSE 

60% Training &40 % Testing 0.132 0.156 

70% Training &30 % Testing 0.135 0.155 

80% Training &20 % Testing 0.103 0.123 

90% Training &10 % Testing 0.101 0.111 

 

As shown in the table above, the performance of the predictive 

model was studied and its performance was evaluated based on the results 

of error measures in four cases of database partitioning. The study shows 

the best performance of the Hybrid model with 90% Training & 10 % 

Testing case, where the MAE=0.101 and RMSE=0.111.While in case 

80% Training & 20% Testing the MAE =0.103 and RMSE =0.123 .The 

worst performance of the proposed hybrid model in case of the 60% 

Training & 40% Testing the MAE=0.135 and RMSE=0.155 and with 

70% Training and 30% Testing, where MAE=0.132 and RMSE=0.156. 

Figure (4.13) shows the loss of the proposed hybrid model, the 

loss for training is approximately =0.25 and for testing is approximately = 

0.10 in 100 epochs. 
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Figure (4.9): Loss of the Proposed Hybrid Model. 

Figure (4.14) illustrated the accuracy of prediction for all features 

using the proposed hybrid model. 

Predict of the DIA Feature 
Predict set of Features : (F15-36,F25-

40,F35-F50,F45-60,and F55-70) 

  

Predict SDIA Predict I feature 
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Predict of IAA feature Predict of IF feature 

  

 

Figure 4.10: Accuracy of Predicted Results in The Hybrid Model. 

A comparison of the proposed LSTM, GRU, and ANN model and 

LSTM model based on the results of error measures that discussion in 

Tables (4.4) and (4.5) is shown in Figures (4.11) and (4.12). 

 

Figure (4.11): Compare Between LATM and Hybrid Model Based 

on MAE Metrics. 
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Figure (4.12): Compare Between LATM and Hybrid Model Based on 

RMSE Metrics. 

As shown in Figures (4.11) and (4.12), proved the LSTM, in 

general, has the best accuracy more than the proposed hybrid prediction 

model. The best value of the MAE =0.023 for the LSTM model while the 

best value of the MAE =0.101 for the proposed hybrid model. 

 The best value of the RMSE =0.029 for the LSTM model while the 

best value of the RMSE =0.111 for the proposed hybrid model. 

4.5 Comparison of Performance Evaluation Between Machine 

Learning and Deep Learning  

Since the proposed model consists of two sub-models, this section 

will compare them to assess which model was the most accurate in 

predicting porosity resulting from the seismic data set of oil reservoirs. 

The comparison is made based on the values of the error measures that 

were used to evaluate the performance of all the algorithms used in 

building the prediction model. 
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Deep learning is the first model, which uses algorithms (LSTM, 

proposed hybrid LSTM, GRU, and ANN), and the second model is 

machine learning, which uses algorithms (SVR, KNR). All algorithms 

used in each model are the most efficient and common algorithms with 

time-series data. 

Based on the results shown in sections (4.3.6) and (4.3.7), Figure 

(4.13) illustrates the comparison between the machine learning model and 

deep learning model based on values of MAE for each algorithm in four 

cases of splitting dataset. 

 

Figure (4.13): Comparison between deep learning and machine learning 

algorithms used in the proposed model based on absolute error ratio values 

(MAE). 

 

Figure (4.14) shows the comparison between the machine learning 

model and the Deep learning model based on values of RMSE for each 

algorithm in four cases of splitting dataset.  
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Figure(4.14): Comparison Between Machine Learning and Deep Learning 

Algorithms used in the Proposed Model Based on Root Means Square Error 

(RMSE). 

Figures (4.13) and (4.14) prove that the performance of deep 

learning algorithms is better than the performance of machine learning 

algorithms. The LSTM algorithm obtains the best results overall testing 

cases of splitting dataset and (MAE & RMSE) metrics. 

The main reason that explains the efficiency of deep learning in 

predicting the porosity generated by the seismic data set of oil reservoirs 

is the type and size of the data, especially when there are sequential data. 

The presence of memory in deep learning networks helps to increase their 

performance and also when the amount of trained data increases, for this 

reason, the performance of both (LSTM) and the proposed mixed (LSTM, 

GRU, and ANN) is better than (SVR and KNR). 
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Chapter Five  

Conclusions and Future Works  

5.1 Introduction  

This chapter concludes with some conclusions about the 

implementation and results of the proposed porosity prediction system. 

These conclusions are given in section (5.2). Section (5.3) outlines 

suggestions for future work. 

5.2 Conclusions  

Some conclusions can be drawn from the results and tests of this 

work as follows: 

1. This study showed that the preprocessing stage of the data does 

not necessarily improve the accuracy of the used model because 

all the seismic data do not have any signs other than the area to 

be explored. 

2. The first methodology used was the Pearson relationship that 

extracted traits with better performance in DL than in ML. 

3. The proposed model for the seismic data set was made to obtain 

the results using a different prediction algorithm and then their 

results are compared with each other. The proposed model is 

built based on the most efficient and effective machine learning 

prediction algorithms, namely SVR and KNR, whereby the SVR 

algorithm achieved the lowest error rate results but not the best 

results. 

4. In addition, the proposed model is built based on deep learning 

prediction algorithms, namely LSTM, LSTM proposal, GRU, 

and mixed ANN, in which the LSTM algorithm achieved the 



 Chapter Five                                         Conclusions and Future Works  

 

 
89 

lowest error rate results. Where the LSTM achieved the best 

results compared to the hybrid. 

5. By dividing the seismic data set into four types of partitions, the 

best performance of the prediction model using machine learning 

in case the 90% training and 10% testing. The best results of the 

MAE =0.243 and RMSE=0.261 with SVR while the KNR 

algorithms achieved MAE=0.246 and RMSE =0.261. 

6. The best performance of the proposed model is based on deep 

learning algorithms obtained with seismic dataset partition case 

the 80% training and 20% testing data. The  LSTM achieved the 

best values of the MAE=0.023 and RMSE=0.029. 

7.  The performance of the proposed model using deep learning 

algorithms is better than the performance of the proposed model 

using machine learning algorithms. The LSTM algorithm obtains 

the best results for test cases (MAE & RMSE) in all cases of the 

data set partition. 

5.2 Suggestions for Future Works  

For future work, it is recommended to take into consideration the 

following points:  

1. Test other types of seismic data that have a large number of features 

to get the best prediction accuracy. 

Use other methods to preprocess the data, apply it to the data, and then 

test their effect on the accuracy of the prediction. 

2. Try to combine the PSO with another supervised learning approach 

for prediction purpose instead the (SVR), K Nearest Neighbors (KNR) 

etc., and compare the obtained result with those prediction algorithms. 



 Chapter Five                                         Conclusions and Future Works  

 

 
90 

3. Use other techniques to extract seismic data features such as ANOVA 

test . 

4. As a further development of the model, we aim to extend the 

capability of multiple platforms by using and experimenting with pool 

datasets from wells to enable professionals to gain feedback on forecast 

results.
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 الخلاصت

أدٖ انرطٕس انٓائم فٙ ذشكٛلاخ انُفظ انصخش٘ إنٗ ذغٛٛش لٕاػذ انهؼثح. يٍ َاحٛح أخشٖ ، ٚهؼة 

ا فٙ انرطٕس انسشٚغ ندًٛغ انصُاػاخ يٍ DL( ٔانرؼهى انؼًٛك )MLانرؼهى اٜنٙ ) ًً ( دٔسًا يٓ

ٔ  MLم صُاػح انُفظ أٚضًا ػهٗ فٕائذ يرسأٚح يٍ يؼظى انؼًهٛاخ انشٔذُٛٛح. ذحص أذًرّخلال 

DL  نرخطٛظ ذطٕٚش انًكايٍ ٔانذلح انرشغٛهٛح يٍ خلال سهسهح يٍ الأَظًح اٜنٛح. نرطٕٚش ْزا

انًدال ، ٚرى إَشاء ًَارج يحاكاج حساتٛح ثاترح ٔدُٚايٛكٛح تُاءً ػهٗ انخصائص انثرشٔفٛضٚائٛح 

يخرهفح يسرٓهكح نهٕلد ٔيكهفح. ذٓذف ْزِ انذساسح إنٗ  انًخرهفح انرٙ ذى خًؼٓا يٍ خلال يٕاسد

نًُزخح انخصائص انثرشٔفٛضٚائٛح تاسرخذاو  ML  ٔDLذمذٚى ًَٕرج شايم فٙ يدال ذطثٛك 

انًرؼذدج انرٙ ذى اخرثاسْا  ML  ٔDLطشق ٔخٕاسصيٛاخ يخرهفح. أخٛشًا ، ذًد يُالشح ذمُٛاخ 

ذى  ،يٍ انذلح فٙ ًَارج انًحاكاج انثرشٔفٛضٚائٛح. فٙ ْزِ انذساسح تانرفصٛم يٍ أخم ذحمٛك انًضٚذ

( انزاكشج ANNاسرخذاو ًَٕرج يٍ خٕاسصيٛاخ انرؼهى انؼًٛك نهشثكاخ انؼصثٛح انًركشسج )

( نهرُثؤ تانًسايٛح. ANN( ٔذغزٚرٓا تٕاسطح شثكح ػصثٛح اصطُاػٛح )LSTMطٕٚهح انًذٖ )

ذغزٚرٓا أٚضًا تٕحذج انثٕاتاخ انًركشسج  ( ٔذىLSTMذى اسرخذاو طشٚمح ْدُٛح ) انُرائح،نرحسٍٛ 

(GRU( ٔذغزٚرٓا تشثكح ػصثٛح اصطُاػٛح )ANN .)،ذى اسرخذاو  انًُٕرج،نرحسٍٛ  نزنك

 خاس الألشب Kٔاَحذاس  Support Vector Regression (SVR)خٕاسصيٛاخ الاَحذاس 

(KNN،) نهشثكاخ  حٛث ذًد يُالشح َرائح الاَحذاس. نٕحع أٌ خٕاسصيٛاخ انرؼهى انؼًٛك

انؼصثٛح انًركشسج ذفٕلد ػهٗ خٕاسصيٛاخ الاَحذاس. ْزا ٚؼُٙ أَّ تاسرخذاو خٕاسصيٛاخ انرؼهى 

ًٚكُُا انحصٕل ػهٗ أفضم انمشاساخ فٙ انرُثؤ تخضاَاخ انُفظ ٔذمهٛم ػذو انثمح فٙ  انؼًٛك،

ستؼح ٔذمسٛى يدًٕػح انثٛاَاخ إنٗ أ MAS & RMSEانرُمٛة ٔانحفش. تاسرخذاو يماٚٛس انخطأ 

أظٓشخ انُرائح أفضم أداء نهًُٕرج انًمرشذ تُاءً ػهٗ خٕاسصيٛاخ انرؼهى  الألساو،إَٔاع يٍ 

٪ يٍ تٛاَاخ انرذسٚة 08ذى انحصٕل ػهٗ  انضنضانٛح،انؼًٛك. يغ حانح ذمسٛى يدًٕػح انثٛاَاخ 

 = MAE = 0.023 ٔRMSEكاٌ نٓا أفضم لٛى  LSTM٪ يٍ تٛاَاخ الاخرثاس. حٛث أٌ 08ٔ

٪ 08ٚؼرثش ًَٕرج انرُثؤ انز٘ ٚسرخذو انرؼهى اٜنٙ ْٕ الأفضم أداءً فٙ حانح اخرثاس . 0.029

تًُٛا  ،SVRيغ  MAE = 0.238 ٔRMSE = 0.255٪. كاَد أفضم انُرائح ْٙ 08ٔاخرثاس 

 . MAE=0.276 ٔ RMSE=0.301َرائح ْٙ  KNRحممد خٕاسصيٛاخ 
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